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Problem Set #1 with solution

Exercise 1 p 5 [N]:
α ∈ Z[i] is unit if and only if N(α) = 1.

Solution:
Suppose that α is a unit of Z[i] then there is γ ∈ Z[i] such the αγ = 1, then N(α)|1
and since N(α) is a positive integer then N(α) = 1.
Suppose that N(α) = 1 then αᾱ = 1 and ᾱ is an inverse of α.
(Note that the units are precisely ±1 and ±i. Indeed, ±1, ±i are clearly unit (and of
norm 1). Let a + ib ∈ Z[i] of norm 1, then a2 + b2 = 1, but the only possibilities are
that a = ±1 and b = ±i, hence the result.)

Exercise 3 p 5 [N]:
Show that the integer solutions of the equation

x2 + y2 = z2

such that x, y, Z > 0 and (x, y, z) = 1 (”pythagorean triple”) are all given, up to
possible permutation of x and y, by the formulae

x = u2 − v2, y = 2uv, z = u2 + v2,

where u, v ∈ Z, u > v > 0, (u, v) = 1, u, v not both odd.

Solution:
Since if (x, y, z) is a Pythagorean triple, then (λx, λy, λz) is also a Pythagorean triple.
It is also clear that all Pythagorean triples are multiples of the primitive ones. Hence
to determine all Pythagorean triples it suffices to determine the primitive ones, i.e x,
y and z are coprime.
First, notice that in a Pythagorean triplet a and b cannot be both odd. For then we
would have a2 + b2 ≡ 1 + 1 ≡ 2 mod 4 but c2, being a square, cannot be ≡ 1 mod 4 .

Claim 1: Suppose (x, y, z) is a primitive Pythagorean triple. Then x + yi and x − yi
are relatively prime in Z[i] i.e. they have no common prime divisors in Z[i].
Proof of the claim: Suppose instead x+ iy and x− iy have a common prime divisor
π ∈ Z[i]. Then π divides their sum 2x and their difference 2yi. Since x and y have
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no common fractors in Z, they have no common prime factors in Z[i]. Thus must be a
prime dividing 2, i.e., π = ±1 +±i. Then

N(π) = ππ̄ = 2|(x+ yi)(x− yi) = x2 + y2 = z2

This means z is even, so x2 + y2 ≡ 0 mod 4 which implies x and y are both even, a
contradiction.

Claim 2: Suppose α, β ∈ Z[i] are relatively prime. If αβ = γ2 is a square in Z[i], then uα
and u−1β are squares for some unit u of Z[i].
Proof of the claim: Note that this is trivial if γ is a unit (and vacuous if γ = 0).
So assume αβ is the square of some γ ∈ Z[i], where γ is a non-zero non-unit. Then γ
has a prime factorization in Z[i]:

γ =
∏

πeii

Thus the prime factorization of

αβ =
∏

π2ei
i

up to a reordering of primes, since πi and πj are coprime if i 6= j, we have

α = u−1π2e1
1 ...π

2ej
j

β = uπ
2ej+1
i+2 ...π2ek

k

for some unit u.
Solution of the initial problem (⇐) Suppose we have u and v with the given
properties. Clearly a, b and c satisfied a2+b2 = c2 and gcd(a, c) divides gcd(c−a, c+a) =
gcr(2u2, 2v2) = 2. But since u 6≡ v mod 2, a and c are odd and so gcd(a, c) = 1. Hence,
gcd(a, b, c) = 1.
(⇒) Suppose (x, y, z) is a primitive Pythagorean triple, so x2+y2 = (x+iy)(x−yi) = z2.
By the first lemma, x+ iy and x− iy are relatively prime, and by the second they are
units times squares. In particular x + iy = ±α2 or x + yi = ±iα2 for α ∈ Z[i]. Since
−1 is a square in Z[i], we may absorb the possible minus sign into α and write either
x+ yi = α2 or x+ iy = iα2.
Write α = u+ iv, and we get in the first case

x+ iy = (u+ vi)2 = u2 + v2 + 2uvi

and
x+ yi = i(u+ vi)2 = −2uv + (u2 + v2)i

In the first case, we have x = u2 + v2 , y = 2uv. In the second, we may replace u by
−u or v by −v to write x = 2uv, y = u2 + v2 and to obtain u and v in N. Then the
conditions gcd(u, v) = 1, u > v and u, v not both odd all follow from the facts that
gcd(x, y) = 1 and x, y > 0.
The last statement is obvious.
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Let d be a square free integer and Z[
√
d] = {a + b

√
d|a, b ∈ Z} be the subring of the

quadratic extension Q[
√
d] of Q. (Notice that it is not always equal to the ring of the

integer of this quadratic extension (see Exercise 4 p 15)). Let N be the multiplicative map:

N(a+ b
√
d) = (a+ b

√
d)(a− b

√
d) = a2 + db2 ∈ Z

(Note that is it is the restriction to Z[
√
d] of norm map for the quadratic extension Q[

√
d]

of Q since the Galois group of this quadratic extension is formed by the identity map and
the map sending a+

√
db to a−

√
db).

We show that α = a+ b
√
d ∈ Z[

√
d] is a unit if and only if

• a2 − db2 = 1, if d ≤ 1;

• a2 − db2 = ±1, if d > 1;

Indeed, let α = a+ b
√
d ∈ Z[

√
d] be a unit, then there is β ∈ Z[

√
d] such that αβ = 1 so

that by multiplicativity of N applied to the equality, we get N(α)N(β) = 1 and,

• when d ≤ 1, then N(α) = a2 + (−d)b2 ∈ N, this implies that N(α) = 1 i.e.
a2 − db2 = 1;

• when d > 1, then N(α) = a2−db2 ∈ Z, this implies that N(α) = ±1 i.e. a2−db2 =
±1.

Now, let α = a+ b
√
d ∈ Z[

√
d]

• if d ≤ 1 and a2 − db2 = 1 then α(a−
√
db) = 1 with α = a− b

√
d ∈ Z[

√
d] so that

α is a unit;

• if d > 1 and a2−db2 = ±1, then α(±(a−
√
db)) = 1 with α = ±(a−b

√
d) ∈ Z[

√
d]

so that α is also a unit.

Exercise 5 p 5 [N] :
Show that the only units of the ring Z[

√
−d] = Z + Z

√
−d, for any rational integer

d > 1 are ±1.
Solution:
Let α = a + b

√
−d be a unit of Z[

√
−d] since d > 1, this is equivalent to a2 + db2 = 1,

but since a and b are integers, this is equivalent to b = 0 and a = ±1.

We recall how to prove that a Pell’s Fermat equation has infinitely many solution.
Claim 1: Let N ∈ N and suppose N is not a square. Then there exist x 6= 1, y 6= 0 ∈ N
such that x2 −Ny2 = 1.
Proof of claim 1: For N = 2, 3, 5, 6 our theorem is true since we have 32 − 2× 22 = 1,
22 − 3× 12 = 1, 92 − 5× 42 = 1, 52 − 6× 22 = 1. So, we can assume that N ≥ 7.
Consider the continued fraction expansion of

√
N given by

√
N = [a0, a1, ...., ar, 2a0]
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say. Let p/q = [a0, ...., ar]. Then, from our elementary estimates we find that

|p
q
−
√
N | < 1

2a0q2

Multiply on both side by |p/q +
√
N | ≤ (2

√
N + 1). We find,

|p
2

q2
−N | < 2

√
N + 1

2a0q2

Multiply on both sides by q2 to find |p2 −Nq2| < (2
√
N + 1)/2[

√
N ]. When N ≥ 7 we

have
2
√
N + 1

2[
√
−N ]

<
2
√
N + 1

2(
√
N − 1)

< 2

Hence, |p2 −Nq2| < 2. So, we have either p2 − nq2 = −1 or p2 −Nq2 = 1. (why can’t
we have p2 − Nq2 = 0?). In case p2 − Nq2 = 1 we find x = p, y = q as solution. In
case p2 − Nq2 = −1 we notice that (p2 + Nq2)2 − N(2pq)2 = (p2 − Nq2)2 = 1. Hence
we have the solution x = p2 +Nq2, y = 2pq.

Once we get this non-trivial solution we get infinitely many solutions, by the following:
Claim 2: Choose the solution of Pell’s equation with x + y

√
N > 1 and minimal. Call it

(p, q). Then, to any solution x, y ∈ N of Pell’s equation there exists n ∈ N such that
x+ y

√
N = (p+ q

√
N)n.

Proof of claim 2: Notice that if u, v ∈ Z satisfy u2 − Nv2 = 1 and u + v
√
N ≥ 1,

then u − v
√
N , being equal to (u + v

√
N)−1 lies between 0 and 1. Addition of the

inequalities u + v
√
N ≥ 1 and 0 ≤ u − v

√
N ≤ 1 implies u ≥ 0. Substraction of

these inequalities yields v > 0. We call u + v
√
N the size of the solution u, v. Now,

let x, y ∈ N be any solution of Pell’s equation. Notice that (x + y
√
N)(p − q

√
N) =

(px− qyN) + (py − qx)
√
N . Let u = px− qyN , v = py − qx an we have u2 −Nv2 = 1

and u+ v
√
N = (x+ y

√
N)/(p+ q

√
N). Observe that

1 ≤ x+ y
√
N

p+ q
√
N

<
x+ y

√
N

2

hence 1 ≤ u+v
√
N < x+y

√
N

2
. So we have found a new solution with positive coordinates

and size bounded by half the size of x+ y
√
N . By repeatedly performing this operation

we obtain a solution whose size is less than the size of p+ q
√
N . By the minimality of

p, q this implies that this last solution should be 1, 0. Supposing the number of steps is
n we thus find that x+ y

√
N = (p+ q

√
N)n.

Exercise 6 p 5 [N]:
Show that the ring Z[

√
d] = Z + Z

√
d, for squarefree rational integer d > 1, has in-

finitely many units.
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Solution:
Let α = a+ b

√
d be a unit of Z[

√
d] since d > 1, this is equivalent to a2−db2 = ±1, but

already a2 − db2 = 1 is a Pell’s equation that we have just seen to have infinitely many
solutions. As a consequence, we have infinitely many units.

Exercise 7 p 5 [N]:
Show that the ring Z[

√
2] = Z+Z

√
2 is euclidean. Show furthermore that its units are

given by ±(1 +
√

2)n, n ∈ Z and determine its prime elements.

Solution:
Consider x, y ∈ Z[

√
2], so that x = a + b

√
2 and y = c + d

√
2, for a, b, c, d ∈ Z. We

can calculate the quotient:

y
x

= a+b
√
2

c+d
√
2

= a+b
√
2

c+d
√
2
· c−d

√
2

c−d
√
2

= (ac−2bd)+(bc−ad)
√
2

c2−2d2

=
(
ac−2bd
c2−2d2

)
+
(
bc−ad
c2−2d2

)√
2

Let f = ac−2bd
c2−2d2 ∈ Q and g = bc−ad

c2−2d2 ∈ Q so that y/x = f + g
√

2 ∈ Q[
√

2]. Let

q = u + v
√

2 ∈ Z[
√

2], where u ∈ Z is the closest integer to g ∈ Q. This implies that
|f − u| ≤ 1/2 and |g − v| ≤ 1/2. Consider the following:

N(y/x− q) = N((f + g
√

2)− (u+ v
√

2))

= N((f − u) + (g − v)
√

2)
= |(f − u)2 − 2(g − v)2|
≤ (f − u)2 + 2(g − v)2

≤ (1/2)2 + 2(1/2)2

= 3/4

Define r = y − qx ∈ Z[
√

2] so that y = qx+ r. Now, consider N(r):

N(r) = N(y − qx)
= N(x(y/x− q))
= N(x)N(y/x− q) Since N is multiplicative.
≤ N(x)(3/4)
< N(x)

Note: If q = y/x then y = qx and r = 0.
We have therefore proven that Z[

√
2] is a Euclidean Domain.

We have seen that a + b
√

2 ∈ Z[
√

2] is a unit if and only if a2 − 2b2 = ±1. So that if
a 6= 0, then a2 ≥ 1 so that |b| ≤ |a| < 2|b|.
First, we notice that it is enough to consider the case when a, b ≥ 0, indeed if a and
b negative then we have that a + b

√
2 = −(−a − b

√
2) with −a and −b positive. Now
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if a positive and b negative then 1
a−(−b)

√
2

= a+(−b)
√
2

a2−2b2 = ±(a + (−b)
√

2) with a and −b
positive and finally if a negative and b positive, then −(a + b

√
2) corresponds to the

previous case.
Let, now restrict ourselves to a, b ≥ 0, and prove that the units are of the form (1+

√
2)n

by induction on b, we prove that for any b ∈ N, there is an integer n such that a+b
√

2 =
(1 +

√
2)N .

If a, b > 0 and a+ b
√

2 is a unit then

(a+ b
√

2)(
√

2− 1) = (2b− a) + (a− b)
√

2

is also a unit. Since we know that b ≤ a < 2b, we have that 2b−a > 0 and 0 ≤ a−b < b,
so by induction, there is an integer n such that:

(a+ b
√

2)(
√

2− 1) = (1 +
√

2)n

But multiplying both sides by 1 +
√

2 you get:

a+ b
√

2 = (1 +
√

2)n+1

As a consequence, we get the result we want by induction.
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Now, we want to know all the prime of Z[
√

2]. For this, let’s make make some remarks
which works in general good to know,
Claim: If Z(

√
d) has the unique factorization property (which is the case when the ring is

Euclidean and then prime elements are exactly the irreducible element), then

1. If α ∈ Z(
√
d) and N(α) is a prime in Z, then α is irreducible.

2. Any natural prime p is either a prime π or a product π′π′′ of two (not necessarily
distinct) primes of Z(

√
d);

3. The totality of primes π, π′ and π′′, obtained by applying (2) to all the natural primes,
together with their associates, constitute the set of all primes of Z(

√
d).

4. An odd natural prime p not divisor of d is a product π′π′′ of two prime if and only if
d is a quadratic residue modulo p.

Proof of the claim:

1. Suppose that α ∈ Z(
√
d) and N(α) is a prime in Z and α not irreducible that

is there is an element β and γ in Z(
√
d) non-unit, i.e. with |N(β)| and |N(γ)|

integer strictly greater to 1 such that βγ = 1 but applying the norm which is
multiplicative to the equality we obtain N(α)N(β) = 1 which is impossible.

2. A natural prime p is either a prime, π, of Z(
√
d) or composite i.e. p = π′π′′,

where π′ and π′′ are non-unit integers of Z(
√
d). In the latter case, N(π′)N(π′′) =

N(p) = p2. Since π′ and π′′ are not units, there norms are unequal to 1 , so that
we must have N(π′) = N(π′′) = p. Hence, by (1), π′ and π′′ are primes.

3. First prove that any prime π of Z(
√
d), there corresponds a unique natural prime

p which is divisible by π. Indeed, a prime π of Z(
√
d) is a divisor of its norm.

Hence there exist natural divisible by π. Let n be the least of these. Then n
is a natural prime. For otherwise, n could be factored into a product n′n′′ of
smaller natural numbers and, by the unique factorization property, either n′ or n′′

would be divisible by π, contradicting the assumption that n is the least natural
number divisible by π. Hence, n is a natural prime p divisible by π. To prove
the uniqueness of p, assume that q is another natural prime divisible by π. Then
there exist rational integers x, y such that px+ qy = 1, from which it follows that
π is a divisor of 1, which is obviously false. Hence, the natural prime such that π
divide p is unique. Then (3) follows from this and (2).

4. Let p be an odd natural prime not divisor of d and such that d is a quadratic
residue modulo p. Then there exist a natural number n such that p is divisor of
n2 − d = (n−

√
d)(n+

√
d). If p were a prime of Z[

√
d], then one of the factors

n−
√
d and n +

√
d would be divisible by p. But, then, N(p) = p2|N(n−

√
d) =

n2− d and p|n+
√
d = n2−d

n−
√
d

so that p|2n and p being odd p|n and then p|d which

is in contradiction with the assumptions. Therefore, p is not prime in Z[
√
d] but

the product of 2 prime by (2).
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Conversely, let p be an odd natural prime not divisor of d and equal to the product
of π′π′′ of prime of Z[

√
d]. Then we can write π′ = a+b

√
d and N(π′) = a2−db2 =

p, so that a2 ≡ db2 mod p. Now, b cannot be divisible by p, because this would
imply that a, hence also π′ would be divisible by p, which is obviously false. So,
there is a rational integer w such that wb ≡ 1 mod p. Hence, d ≡ w2a2 mod p,
i.e. d is quadratic residue modulo p.

Now we go back to the present exercise with d = 2, and remember that by Gauss lemma,
2 is a quadratic residue mod 8 if and only if p ≡ ±1 mod 8. As a consequence we have
that the prime of Z which are also prime on Z[

√
2] are the prime congruent to ±3 mod-

ulo 8, the element of Z[
√

2] whose norm is a natural prime congruent to ±1 modulo 8;
the number whose norm equals 2, i.e the number

√
2 an associates.
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If you have forgotten:

1. Let p be an odd prime and a ∈ Z not divisible by p. Then a is called a quadratic
residue mod p if x2 ≡ a mod p has a solution and a quadratic non residue modulo
p if x2 ≡ a mod p has no solution.

2. Let p be an odd prime. The Legendre symbol is defined by

(
a

p

)
=


1 if a is quadratic residue mod p
−1 if a is quadratic non residue mod p
0 if p|a.

Euler’s Criterion Let p be an odd prime and a an integer not divisible by p.

1. There are exactly (p − 1)/2 quadratic residues mod p and (p − 1)/2 quadratic
non-residue mod p

2. x2 ≡ a mod p has a solution if and only if

a(p−1)/2 ≡ 1 mod p.

More precisely, (
a

p

)
≡ a(p−1)/2 mod p

Proof of Euler Criterion:

1. Consider the residue classes 12, 22, ..., ((p−1)/2)2 mod p. Since a2 ≡ (−a)2 mod p,
these are all quadratic residues modulo p. They are also distinct, from a2 ≡
b2 mod p would follow a ≡ ±b mod p and when 1 ≤ a, b ≤ (p− 1)/2 this implies
a = b. So there are exactly (p− 1)/2quadratic residues modulo p. The remaining
p− 1− (p− 1)/2 = (p− 1)/2 residue classes are of course quadratic non residues.

2. Clear, if a ≡ 0 mod p. So assume, a 6≡ 0 mod p. Since (a(p−1)/2)2 ≡ ap−1 ≡
1 mod p by Fermat’s little theorem we see that a(p−1)/2 ≡ ±1 mod p. Suppose that
a is a quadratic residue, i.e there is an integer x such that x2 ≡ a mod p. Then
1 = xp−1 ≡ (x2)(p−1)/2 ≡ a(p−1)/2 mod p, which proves half of our assertion. Since
we work in the field Z/pZ, the equation x(p−1)/2 ≡ 1 mod p has at most (p− 1)/2
solutions. We know these solutions to be the (p− 1)/2 quadratic residues. Hence,
a(p−1)/2 ≡ −1 mod p, for any quadratic non residue a mod p.

We can be reformulated Euler Criterion in more group-theoretic language as follows. The
map

(Z/pZ)∗ ' {±1}

that sends a to a(p−1)/2 (mod p) is a homomorphism of groups, whose kernel is the subgroup
of squares of elements of (Z/pZ)∗.
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Corollary: Let p be an odd prime and a, b ∈ Z. Then,(
a

p

)(
b

p

)
=

(
ab

p

)
Proof of Corollary:(

a

p

)(
b

p

)
≡ a(p−1)/2b(p−1)/2 ≡ (ab)(p−1)/2 ≡

(
ab

p

)
mod p

Because Legendre symbols can only be 0, ±1 and p ≥ 3, the strict equality
(
a
p

)(
b
p

)
=(

ab
p

)
follows.

Corollary: Let p be an odd prime. Then,
(

1
p

)
= 1 and

(
−1
p

)
=

{
1 if p ≡ 1 mod 4
−1 if p ≡ −1 mod 4

Proof of Corollary: Of course,
(

1
p

)
= 1 is trivial. Also, we know that

(
−1
p

)
≡ (−1)(p−1)/2 mod p.

Since p ≥ 3 strict equality follows.
We say that the residue classes 1, 2, ..., (p − 1)/2 mod p are called positive, the residue
classes −1, −2, ..., −(p − 1)/2 mod p are called negative. Gauss Lemma Let p be
an odd prime and let a be an integer 6≡ 0 (mod p). Form the numbers

a, 2a, 3a, . . . ,
p− 1

2
a

and reduce them modulo p to lie in the interval (−p
2
, p

2
). Let µ be the number of

negative residue classes mod p. Then(a
p

)
= (−1)µ.

Proof of Gauss lemma: In defining ν, we expressed each number in

S =

{
a, 2a, . . . ,

p− 1

2
a

}
as congruent to a number in the set{

1,−1, 2,−2, . . . ,
p− 1

2
,−p− 1

2

}
.

No number 1, 2, . . . p−1
2

appears more than once, with either choice of sign, because if
it did then either two elements of S are congruent modulo p or 0 is the sum of two
elements of S, and both events are impossible. Thus the resulting set must be of the
form

T =

{
ε1 · 1, ε2 · 2, . . . , ε(p−1)/2 ·

p− 1

2

}
,

10



where each εi is either +1 or −1. Multiplying together the elements of S and of T , we
see that

(1a) · (2a) · (3a) · · · · ·
(
p− 1

2
a

)
≡ (ε1 · 1) · (ε2 · 2) · · ·

(
ε(p−1)/2 ·

p− 1

2

)
(mod p),

so
a(p−1)/2 ≡ ε1 · ε2 · · · · · ε(p−1)/2 (mod p).

The lemma then follows from Euler Criterion.

When 2 is a quadratic residue: Let p be an odd prime. Then,
(

2
p

)
=

{
1 if p ≡ ±1 mod 8
−1 if p ≡ ±3 mod 8

Proof: We apply Gauss’ lemma. To do so we must count µ, the number of negative
residue among 2, 4, ..., p− 1 mod p. So,

µ = ]{n even|(p+ 1)/2 ≤ n ≤ p− 1} = ]{n|(p+ 1)/4 ≤ n ≤ (p− 1)/2}

Replace n by (p+ 1)/2− n to obtain

µ = ]{n|1 ≤ n ≤ (p+ 1)/4} = [(p+ 1)/4]

This implies that µ is even if p ≡ ±1 mod 8 and µ is odd if p ≡ ±3 mod 8. Gauss
lemma now yields our assertion.
Notice that (2

p

)
= (−1)(p

2−1)/8
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Exercise 1 p 15 [N]:

Is 3+2
√
6

1−
√
6

an algebraic integer ?

Solution:

3 + 2
√

6

1−
√

6
=

(3 + 2
√

6)(1 +
√

6)

−5
=

15 + 5
√

6

−5
= −3−

√
6

Now, 3+2
√
6

1−
√
6

= −3−
√

6 is a root of the polynomial:

(x+ 3 +
√

6)(x+ 3−
√

6) = x2 + 6x+ 3

which has integral coefficient so that 3+2
√
6

1−
√
6

is an algebraic integer.

Exercise 2 p 15 [N]:
Show that, if the integral domain A is integrally closed, then so is the polynomial ring
A[t].

Solution:
Let K = {a/b|a, b ∈ A, b 6= 0} be the fraction field of A. Then A is integrally closed
means that A is integrally closed in K, i.e. if α ∈ K is integral over A then we must
have α ∈ A. Now, k(t) is the fraction field of A[t] then we must have α(t) ∈ A[t].

Claim: If f(t), g(t) ∈ K[t] are monic polynomials such that f(t) · g(t) ∈ A[t] then
f(t), g(t) ∈ A[t].
Proof of the claim: Write f(t) =

∏l
i=1(x− ai) and g(t) =

∏m
j=1(x− bi). The roots

ai, bj must be integral over A since f(t)g(t) is a monic polynomial with coefficients in
R. On the other hand, the coefficients of f , g lie in K. But A is integrally closed by
assumption which implies that the coefficients of f , g must lie in A.

We now conclude the proof that A[t] is integrally closed K(t). Assume that f(t) ∈ K(t)
is monic (we may need to add a high power of t to f(t) to arrange this and integral
over A[t], i.e., satisfies a polynomial equation

f(t)n + an−1f(t)n−1 + ...+ a1f(t) + a0 = 0, (ai ∈ A[t])

Then we must have

f(t) · (f(t)n−1 + an−1f(t)n−2 + · · ·+ a1) = −a0 ∈ A[t]

The lemma immediately gives that f(t) ∈ A[t].
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